Journal of Multivariate Analysis
1971 - 2025
Current editor(s): de Leeuw, J. From Elsevier Bibliographic data for series maintained by Catherine Liu (). Access Statistics for this journal.
Is something missing from the series or not right? See the RePEc data check for the archive and series.
Volume 172, issue C, 2019
- A framework for measuring association of random vectors via collapsed random variables pp. 5-27

- Marius Hofert, Wayne Oldford, Avinash Prasad and Mu Zhu
- Dependence in a background risk model pp. 28-46

- Marie-Pier Côté and Christian Genest
- Partially Schur-constant models pp. 47-58

- Anna Castañer, M. Mercè Claramunt, Claude Lefèvre and Stéphane Loisel
- Composite likelihood estimation method for hierarchical Archimedean copulas defined with multivariate compound distributions pp. 59-83

- Hélène Cossette, Simon-Pierre Gadoury, Etienne Marceau and Christian Y. Robert
- Heterogeneous tail generalized COMFORT modeling via Cholesky decomposition pp. 84-106

- Jeffrey Näf, Marc S. Paolella and Paweł Polak
- Copula-based dynamic models for multivariate time series pp. 107-121

- Bouchra R. Nasri and Bruno N. Rémillard
- Model assessment for time series dynamics using copula spectral densities: A graphical tool pp. 122-146

- Stefan Birr, Tobias Kley and Stanislav Volgushev
- Nonparametric estimation of multivariate tail probabilities and tail dependence coefficients pp. 147-161

- Pavel Krupskii and Harry Joe
- Geometry of discrete copulas pp. 162-179

- Elisa Perrone, Liam Solus and Caroline Uhler
- Model selection in sparse high-dimensional vine copula models with an application to portfolio risk pp. 180-192

- T. Nagler, C. Bumann and C. Czado
- Adjustable network reconstruction with applications to CDS exposures pp. 193-209

- Axel Gandy and Luitgard Anna Maria Veraart
- Reconstructing the topology of financial networks from degree distributions and reciprocity pp. 210-222

- Janina Engel, Andrea Pagano and Matthias Scherer
Volume 171, issue C, 2019
- Principal component analysis in an asymmetric norm pp. 1-21

- Ngoc M. Tran, Petra Burdejová, Maria Ospienko and Wolfgang K. Härdle
- Substationarity for spatial point processes pp. 22-36

- Tonglin Zhang and Jorge Mateu
- Nonparametric independence screening for ultra-high dimensional generalized varying coefficient models with longitudinal data pp. 37-52

- Shen Zhang, Peixin Zhao, Gaorong Li and Wangli Xu
- Nonparametric estimation of the marginal effect in fixed-effect panel data models pp. 53-67

- Yoonseok Lee, Debasri Mukherjee and Aman Ullah
- Asymptotic properties of nonparametric estimation and quantile regression in Bayesian structural equation models pp. 68-82

- Gwangsu Kim and Taeryon Choi
- Multivariate discrete distributions via sums and shares pp. 83-93

- M.C. Jones and Éric Marchand
- A generalized spatial sign covariance matrix pp. 94-111

- Jakob Raymaekers and Peter Rousseeuw
- Point-wise estimation for anisotropic densities pp. 112-125

- Youming Liu and Cong Wu
- A novel mixture model using the multivariate normal mean–variance mixture of Birnbaum–Saunders distributions and its application to extrasolar planets pp. 126-138

- Mehrdad Naderi, Wen-Liang Hung, Tsung-I Lin and Ahad Jamalizadeh
- A copula approach for dependence modeling in multivariate nonparametric time series pp. 139-162

- Natalie Neumeyer, Marek Omelka and Šárka Hudecová
- Predictor ranking and false discovery proportion control in high-dimensional regression pp. 163-175

- X. Jessie Jeng and Xiongzhi Chen
- Wild bootstrapping rank-based procedures: Multiple testing in nonparametric factorial repeated measures designs pp. 176-192

- Maria Umlauft, Marius Placzek, Frank Konietschke and Markus Pauly
- Transformed statistics for tests of conditional independence in J×K×L contingency tables pp. 193-208

- Nobuhiro Taneichi, Yuri Sekiya and Jun Toyama
- PAC-Bayesian risk bounds for group-analysis sparse regression by exponential weighting pp. 209-233

- Tung Duy Luu, Jalal Fadili and Christophe Chesneau
- Fixed support positive-definite modification of covariance matrix estimators via linear shrinkage pp. 234-249

- Young-Geun Choi, Johan Lim, Anindya Roy and Junyong Park
- Graph-based sparse linear discriminant analysis for high-dimensional classification pp. 250-269

- Jianyu Liu, Guan Yu and Yufeng Liu
- Penalized generalized empirical likelihood in high-dimensional weakly dependent data pp. 270-283

- Jia Zhang, Haoming Shi, Lemeng Tian and Fengjun Xiao
- Feature screening in ultrahigh-dimensional varying-coefficient Cox model pp. 284-297

- Guangren Yang, Ling Zhang, Runze Li and Yuan Huang
- Wavelet variance ratio cointegration test and wavestrapping pp. 298-319

- Burak Alparslan Eroğlu
- Semiparametric regression for measurement error model with heteroscedastic error pp. 320-338

- Mengyan Li, Yanyuan Ma and Runze Li
- Sufficient dimension reduction and prediction in regression: Asymptotic results pp. 339-349

- Liliana Forzani, Daniela Rodriguez, Ezequiel Smucler and Mariela Sued
- Simultaneous estimation and variable selection for incomplete event history studies pp. 350-361

- Hui Zhao, Dayu Sun, Gang Li and Jianguo Sun
- Model robust inference with two-stage maximum likelihood estimation for copulas pp. 362-381

- Vinnie Ko and Nils Lid Hjort
- Large-sample estimation and inference in multivariate single-index models pp. 382-396

- Jingwei Wu, Hanxiang Peng and Wanzhu Tu
- Robust maximum Lq-likelihood estimation of joint mean–covariance models for longitudinal data pp. 397-411

- Lin Xu, Sijia Xiang and Weixin Yao
- High-dimensional testing for proportional covariance matrices pp. 412-420

- Koji Tsukuda and Shun Matsuura
- Tail densities of skew-elliptical distributions pp. 421-435

- Harry Joe and Haijun Li
- Harmonic analysis and distribution-free inference for spherical distributions pp. 436-451

- S. Rao Jammalamadaka and György H. Terdik
- Finite mixture of varying coefficient model: Estimation and component selection pp. 452-474

- Mao Ye, Zhao-Hua Lu, Yimei Li and Xinyuan Song
- Note of Clarification on ‘Hidden truncation hyperbolic distributions, finite mixtures thereof, and their application for clustering’, by Murray, Browne, and McNicholas, J. Multivariate Anal. 161 (2017) 141–156 pp. 475-476

- Paula M. Murray, Ryan P. Browne and Paul D. McNicholas
Volume 170, issue C, 2019
- Recent advances in functional data analysis and high-dimensional statistics pp. 3-9

- Germán Aneiros, Ricardo Cao, Ricardo Fraiman, Christian Genest and Philippe Vieu
- Describing the concentration of income populations by functional principal component analysis on Lorenz curves pp. 10-24

- Enea G. Bongiorno and Aldo Goia
- An RKHS model for variable selection in functional linear regression pp. 25-45

- José R. Berrendero, Beatriz Bueno-Larraz and Antonio Cuevas
- Robust sieve estimators for functional canonical correlation analysis pp. 46-62

- Agustín Alvarez, Graciela Boente and Nadia Kudraszow
- Optimal shrinkage estimator for high-dimensional mean vector pp. 63-79

- Taras Bodnar, Ostap Okhrin and Nestor Parolya
- Local polynomial estimation of regression operators from functional data with correlated errors pp. 80-94

- Karim Benhenni, Ali Hajj Hassan and Yingcai Su
- Data depth for measurable noisy random functions pp. 95-114

- Stanislav Nagy and Frédéric Ferraty
- The spatial sign covariance operator: Asymptotic results and applications pp. 115-128

- Graciela Boente, Daniela Rodriguez and Mariela Sued
- Volatility estimation in a nonlinear heteroscedastic functional regression model with martingale difference errors pp. 129-148

- Mohamed Chaouch
- Multivariate and functional robust fusion methods for structured Big Data pp. 149-161

- Catherine Aaron, Alejandro Cholaquidis, Ricardo Fraiman and Badih Ghattas
- Multi-aspect local inference for functional data: Analysis of ultrasound tongue profiles pp. 162-185

- Alessia Pini, Lorenzo Spreafico, Simone Vantini and Alessandro Vietti
- Strongly consistent autoregressive predictors in abstract Banach spaces pp. 186-201

- María D. Ruiz-Medina and Javier Álvarez-Liébana
- Asymptotics, finite-sample comparisons and applications for two-sample tests with functional data pp. 202-220

- Qing Jiang, Marie Hušková, Simos G. Meintanis and Lixing Zhu
- Quantifying prediction uncertainty for functional-and-scalar to functional autoregressive models under shape constraints pp. 221-231

- Jacopo Rossini and Antonio Canale
- High-dimensional functional time series forecasting: An application to age-specific mortality rates pp. 232-243

- Yuan Gao, Han Lin Shang and Yanrong Yang
- Commuter of operators in a Hilbert space pp. 244-262

- Alain Boudou and Sylvie Viguier-Pla
- Spatial functional principal component analysis with applications to brain image data pp. 263-274

- Yingxing Li, Chen Huang and Wolfgang K. Härdle
- Modeling spatially dependent functional data via regression with differential regularization pp. 275-295

- Eleonora Arnone, Laura Azzimonti, Fabio Nobile and Laura M. Sangalli
- Estimation and testing for partially functional linear errors-in-variables models pp. 296-314

- Hanbing Zhu, Riquan Zhang, Zhou Yu, Heng Lian and Yanghui Liu
- Inference for sparse and dense functional data with covariate adjustments pp. 315-335

- Dominik Liebl
| |