Biometrics
1999 - 2023
From The International Biometric Society Bibliographic data for series maintained by Wiley Content Delivery (). Access Statistics for this journal.
Is something missing from the series or not right? See the RePEc data check for the archive and series.
Volume 74, issue 4, 2018
- Model assisted sensitivity analyses for hidden bias with binary outcomes pp. 1141-1149

- Giovanni Nattino and Bo Lu
- Sensitivity analysis and power for instrumental variable studies pp. 1150-1160

- Xuran Wang, Yang Jiang, Nancy R. Zhang and Dylan S. Small
- A powerful approach to the study of moderate effect modification in observational studies pp. 1161-1170

- Kwonsang Lee, Dylan S. Small and Paul R. Rosenbaum
- Doubly robust matching estimators for high dimensional confounding adjustment pp. 1171-1179

- Joseph Antonelli, Matthew Cefalu, Nathan Palmer and Denis Agniel
- Optimal two‐stage dynamic treatment regimes from a classification perspective with censored survival data pp. 1180-1192

- Rebecca Hager, Anastasios A. Tsiatis and Marie Davidian
- Bayesian nonparametric generative models for causal inference with missing at random covariates pp. 1193-1202

- Jason Roy, Kirsten J. Lum, Bret Zeldow, Jordan D. Dworkin, Vincent Lo Re and Michael J. Daniels
- Nonparametric estimation of transition probabilities for a general progressive multi‐state model under cross‐sectional sampling pp. 1203-1212

- Jacobo de Uña‐Álvarez and Micha Mandel
- Semiparametric regression analysis of interval‐censored data with informative dropout pp. 1213-1222

- Fei Gao, Donglin Zeng and Dan‐Yu Lin
- Pseudo and conditional score approach to joint analysis of current count and current status data pp. 1223-1231

- Chi‐Chung Wen and Yi‐Hau Chen
- Using survival information in truncation by death problems without the monotonicity assumption pp. 1232-1239

- Fan Yang and Peng Ding
- A partially linear proportional hazards model for current status data pp. 1240-1249

- Minggen Lu and Christopher S. McMahan
- Analysis of multiple survival events in generalized case‐cohort designs pp. 1250-1260

- Soyoung Kim, Donglin Zeng and Jianwen Cai
- Threshold regression to accommodate a censored covariate pp. 1261-1270

- Jing Qian, Sy Han Chiou, Jacqueline E. Maye, Folefac Atem, Keith A. Johnson and Rebecca A. Betensky
- Estimation of the optimal surrogate based on a randomized trial pp. 1271-1281

- Brenda L. Price, Peter B. Gilbert and Mark J. van der Laan
- New robust statistical procedures for the polytomous logistic regression models pp. 1282-1291

- Elena Castilla, Abhik Ghosh, Nirian Martin and Leandro Pardo
- A robust approach to sample size calculation in cancer immunotherapy trials with delayed treatment effect pp. 1292-1300

- Ting Ye and Menggang Yu
- Exponential Family Functional data analysis via a low‐rank model pp. 1301-1310

- Gen Li, Jianhua Z. Huang and Haipeng Shen
- Order selection and sparsity in latent variable models via the ordered factor LASSO pp. 1311-1319

- Francis K. C. Hui, Emi Tanaka and David I. Warton
- Bayesian optimal interval design with multiple toxicity constraints pp. 1320-1330

- Ruitao Lin
- Convex mixture regression for quantitative risk assessment pp. 1331-1340

- Antonio Canale, Daniele Durante and David B. Dunson
- Identifying disease‐associated copy number variations by a doubly penalized regression model pp. 1341-1350

- Yichen Cheng, James Y. Dai, Xiaoyu Wang and Charles Kooperberg
- Detection of multiple perturbations in multi‐omics biological networks pp. 1351-1361

- Paula J. Griffin, Yuqing Zhang, William Evan Johnson and Eric D. Kolaczyk
- Sparse generalized eigenvalue problem with application to canonical correlation analysis for integrative analysis of methylation and gene expression data pp. 1362-1371

- Sandra E. Safo, Jeongyoun Ahn, Yongho Jeon and Sungkyu Jung
- Scalable Bayesian variable selection for structured high‐dimensional data pp. 1372-1382

- Changgee Chang, Suprateek Kundu and Qi Long
- Time‐dynamic profiling with application to hospital readmission among patients on dialysis pp. 1383-1394

- Jason P. Estes, Danh V. Nguyen, Yanjun Chen, Lorien S. Dalrymple, Connie M. Rhee, Kamyar Kalantar‐Zadeh and Damla Şentürk
- Discussion on “Time‐dynamic profiling with application to hospital readmission among patients on dialysis,” by Jason P. Estes, Danh V. Nguyen, Yanjun Chen, Lorien S. Dalrymple, Connie M. Rhee, Kamyar Kalantar‐Zadeh, and Damla Senturk pp. 1395-1397

- Sebastien Haneuse, José Zubizarreta and Sharon‐Lise T. Normand
- Discussion on “Time‐dynamic profiling with application to hospital readmission among patients on dialysis,” by Jason P. Estes, Danh V. Nguyen, Yanjun Chen, Lorien S. Dalrymple, Connie M. Rhee, Kamyar Kalantar‐Zadeh, and Damla Senturk pp. 1398-1400

- Els Goetghebeur
- Discussion on “Time‐dynamic profiling with application to hospital readmission among patients on dialysis,” by Jason P. Estes, Danh V. Nguyen, Yanjun Chen, Lorien S. Dalrymple, Connie M. Rhee, Kamyar Kalantar‐Zadeh, and Damla Senturk pp. 1401-1403

- John D. Kalbfleisch and Kevin He
- Rejoinder: Time‐dynamic profiling with application to hospital readmission among patients on dialysis pp. 1404-1406

- Jason P. Estes, Danh V. Nguyen, Yanjun Chen, Lorien S. Dalrymple, Connie M. Rhee, Kamyar Kalantar‐Zadeh and Damla Şentürk
- Estimating the causal effect of treatment regimes for organ transplantation pp. 1407-1416

- Jeffrey A. Boatman and David M. Vock
- Varying‐coefficient semiparametric model averaging prediction pp. 1417-1426

- Jialiang Li, Xiaochao Xia, Weng Kee Wong and David Nott
- Semi‐parametric methods of handling missing data in mortal cohorts under non‐ignorable missingness pp. 1427-1437

- Lan Wen and Shaun R. Seaman
- Multiple imputation of missing data in nested case‐control and case‐cohort studies pp. 1438-1449

- Ruth H. Keogh, Shaun R. Seaman, Jonathan W. Bartlett and Angela M. Wood
- Sample size determination for GEE analyses of stepped wedge cluster randomized trials pp. 1450-1458

- Fan Li, Elizabeth L. Turner and John S. Preisser
- Power and sample size calculation incorporating misspecifications of the variance function in comparative clinical trials with over‐dispersed count data pp. 1459-1467

- Masataka Igeta, Kunihiko Takahashi and Shigeyuki Matsui
- On the analysis of discrete time competing risks data pp. 1468-1481

- Minjung Lee, Eric J. Feuer and Jason P. Fine
- Mean residual life regression with functional principal component analysis on longitudinal data for dynamic prediction pp. 1482-1491

- Xiao Lin, Tao Lu, Fangrong Yan, Ruosha Li and Xuelin Huang
- A boxplot for circular data pp. 1492-1501

- Davide Buttarazzi, Giuseppe Pandolfo and Giovanni C. Porzio
- Physical activity classification with dynamic discriminative methods pp. 1502-1511

- Evan L. Ray, Jeffer E. Sasaki, Patty S. Freedson and John Staudenmayer
- An asymptotic approximation to the N‐mixture model for the estimation of disease prevalence pp. 1512-1518

- Ben Brintz, Claudio Fuentes and Lisa Madsen
- Pawel Cichosz. Data Mining Algorithms explained using R. Hoboken, Wiley pp. 1519-1520

- Sumanta Basu
- Jure Leskovec, Anand Rajaraman, and Jeffrey D. Ullman. Mining of Massive Datasets. Cambridge, Cambridge University Press pp. 1520-1521

- Lothar Richter
- Rory Allen. Statistics and Experimental Design for Psychologists. Singapore, World Scientific Publishing Co Pte Ltd pp. 1521-1523

- Geoff Bird
- Wiechung Joe Shih and Joseph Aisner. Statistical Design and Analysis of Clinical Trials: Principles and Methods. Boca Raton, CRC Press pp. 1523-1523

- Hui Gu
- Christophe Giraud. Introduction to High‐Dimensional Statistics. Boca Raton, CRC Press pp. 1524-1525

- Katharina Parry and Matthieu Vignes
- Vance Berger. Randomization, Masking, and Allocation Concealment. CRC Press pp. 1525-1526

- Yiyao Chen
Volume 74, issue 3, 2018
- Quantifying publication bias in meta‐analysis pp. 785-794

- Lifeng Lin and Haitao Chu
- Discussion on Quantifying publication bias in meta‐analysis pp. 795-796

- Dan Jackson
- Discussion of “quantifying publication bias in meta‐analysis” by Lin et al pp. 797-799

- Christopher H. Schmid
- Discussion on “Quantifying Publication Bias in Meta‐Analysis” by Lin and Chu pp. 800-800

- Nancy L. Geller
- Rejoinder to “quantifying publication bias in meta‐analysis” pp. 801-802

- Lifeng Lin and Haitao Chu
- A regression framework for assessing covariate effects on the reproducibility of high‐throughput experiments pp. 803-813

- Qunhua Li and Feipeng Zhang
- Subtype classification and heterogeneous prognosis model construction in precision medicine pp. 814-822

- Na You, Shun He, Xueqin Wang, Junxian Zhu and Heping Zhang
- A scalable multi‐resolution spatio‐temporal model for brain activation and connectivity in fMRI data pp. 823-833

- Stefano Castruccio, Hernando Ombao and Marc G. Genton
- MILFM: Multiple index latent factor model based on high‐dimensional features pp. 834-844

- Hojin Yang, Hongtu Zhu and Joseph G. Ibrahim
- A statistical model for helices with applications pp. 845-854

- Kanti V. Mardia, Karthik Sriram and Charlotte M. Deane
- Statistical inference in a growth curve quantile regression model for longitudinal data pp. 855-862

- Hyunkeun Ryan Cho
- Toward a diagnostic toolkit for linear models with Gaussian‐process distributed random effects pp. 863-873

- Maitreyee Bose, James S. Hodges and Sudipto Banerjee
- Dynamic borrowing through empirical power priors that control type I error pp. 874-880

- Stavros Nikolakopoulos, Ingeborg van der Tweel and Kit C. B. Roes
- General single‐index survival regression models for incident and prevalent covariate data and prevalent data without follow‐up pp. 881-890

- Shih‐Wei Chen and Chin‐Tsang Chiang
- C‐learning: A new classification framework to estimate optimal dynamic treatment regimes pp. 891-899

- Baqun Zhang and Min Zhang
- Modeling survival distribution as a function of time to treatment discontinuation: A dynamic treatment regime approach pp. 900-909

- Shu Yang, Anastasios A. Tsiatis and Michael Blazing
- An alternative robust estimator of average treatment effect in causal inference pp. 910-923

- Jianxuan Liu, Yanyuan Ma and Lan Wang
- Estimating individualized treatment rules for ordinal treatments pp. 924-933

- Jingxiang Chen, Haoda Fu, Xuanyao He, Michael R. Kosorok and Yufeng Liu
- Model selection for semiparametric marginal mean regression accounting for within‐cluster subsampling variability and informative cluster size pp. 934-943

- Chung‐Wei Shen and Yi‐Hau Chen
- Semiparametric estimation of the accelerated mean model with panel count data under informative examination times pp. 944-953

- Sy Han Chiou, Gongjun Xu, Jun Yan and Chiung‐Yu Huang
- Generalized accelerated recurrence time model for multivariate recurrent event data with missing event type pp. 954-965

- Huijuan Ma, Limin Peng, Zhumin Zhang and HuiChuan J. Lai
- Methods for multivariate recurrent event data with measurement error and informative censoring pp. 966-976

- Hsiang Yu, Yu‐Jen Cheng and Ching‐Yun Wang
- A wild bootstrap approach for the Aalen–Johansen estimator pp. 977-985

- Tobias Bluhmki, Claudia Schmoor, Dennis Dobler, Markus Pauly, Juergen Finke, Martin Schumacher and Jan Beyersmann
- A Bayesian nonparametric approach to causal inference on quantiles pp. 986-996

- Dandan Xu, Michael J. Daniels and Almut G. Winterstein
- A D‐vine copula‐based model for repeated measurements extending linear mixed models with homogeneous correlation structure pp. 997-1005

- Matthias Killiches and Claudia Czado
- A group sequential test for treatment effect based on the Fine–Gray model pp. 1006-1013

- Michael J. Martens and Brent R. Logan
- Regression analysis for secondary response variable in a case‐cohort study pp. 1014-1022

- Yinghao Pan, Jianwen Cai, Sangmi Kim and Haibo Zhou
- Sieve analysis using the number of infecting pathogens pp. 1023-1033

- Dean Follmann and Chiung‐Yu Huang
- Model‐averaged confounder adjustment for estimating multivariate exposure effects with linear regression pp. 1034-1044

- Ander Wilson, Corwin M. Zigler, Chirag J. Patel and Francesca Dominici
- Regularized continuous‐time Markov Model via elastic net pp. 1045-1054

- Shuang Huang, Chengcheng Hu, Melanie L. Bell, Dean Billheimer, Stefano Guerra, Denise Roe, Monica M. Vasquez and Edward J. Bedrick
- Bayesian enhancement two‐stage design for single‐arm phase II clinical trials with binary and time‐to‐event endpoints pp. 1055-1064

- Haolun Shi and Guosheng Yin
- Motivating sample sizes in adaptive Phase I trials via Bayesian posterior credible intervals pp. 1065-1071

- Thomas M. Braun
- Detecting treatment differences in group sequential longitudinal studies with covariate adjustment pp. 1072-1081

- Neal O. Jeffries, James F. Troendle and Nancy L. Geller
- A multi‐source adaptive platform design for testing sequential combinatorial therapeutic strategies pp. 1082-1094

- Alexander M. Kaizer, Brian P. Hobbs and Joseph S. Koopmeiners
- A utility‐based design for randomized comparative trials with ordinal outcomes and prognostic subgroups pp. 1095-1103

- Thomas A. Murray, Ying Yuan, Peter F. Thall, Joan H. Elizondo and Wayne L. Hofstetter
- New semiparametric method for predicting high‐cost patients pp. 1104-1111

- Adam Maidman and Lan Wang
- An approximate joint model for multiple paired longitudinal outcomes and time‐to‐event data pp. 1112-1119

- Angelo F. Elmi, Katherine L. Grantz and Paul S. Albert
- Reader reaction on the fast small‐sample kernel independence test for microbiome community‐level association analysis pp. 1120-1124

- Bin Guo and Baolin Wu
- BOOK REVIEW pp. 1125-1126

- Jason T. Connor
- BOOK REVIEW pp. 1127-1128

- Chris Fraley
- BOOK REVIEW pp. 1129-1130

- Sándor Baran
- BOOK REVIEW pp. 1131-1131

- Antje Hoering
- BOOK REVIEW pp. 1132-1132

- Donna Pauler Ankerst
- BOOK REVIEW pp. 1133-1133

- Joon Jin Song
- BOOK REVIEW pp. 1134-1136

- Booil Jo
- BOOK REVIEW pp. 1137-1138

- Wayne B. Nelson
Volume 74, issue 2, 2018
- Data†driven confounder selection via Markov and Bayesian networks pp. 389-398

- Jenny Häggström
- Discussion of “Data†driven confounder selection via Markov and Bayesian networks†by Jenny Häggström pp. 399-402

- Edward H. Kennedy and Sivaraman Balakrishnan
- Discussion of “Data†driven confounder selection via Markov and Bayesian networks†by Häggström pp. 403-406

- Thomas S. Richardson, James M. Robins and Linbo Wang
- Rejoinder to Discussions on: Data†driven confounder selection via Markov and Bayesian networks pp. 407-410

- Jenny Häggström
- Spatial capture–mark–resight estimation of animal population density pp. 411-420

- Murray G. Efford and Christine M. Hunter
- Integrated powered density: Screening ultrahigh dimensional covariates with survival outcomes pp. 421-429

- Hyokyoung G. Hong, Xuerong Chen, David C. Christiani and Yi Li
- Joint principal trend analysis for longitudinal high†dimensional data pp. 430-438

- Yuping Zhang and Zhengqing Ouyang
- Eigenvalue significance testing for genetic association pp. 439-447

- Yi†Hui Zhou, J. S. Marron and Fred A. Wright
- A GLM†based latent variable ordination method for microbiome samples pp. 448-457

- Michael B. Sohn and Hongzhe Li
- Empirical null estimation using zero†inflated discrete mixture distributions and its application to protein domain data pp. 458-471

- Iris Ivy M. Gauran, Junyong Park, Johan Lim, DoHwan Park, John Zylstra, Thomas Peterson, Maricel Kann and John L. Spouge
- Augmented and doubly robust G†estimation of causal effects under a Structural nested failure time model pp. 472-480

- Karl Mertens and Stijn Vansteelandt
- Inverse probability weighted Cox regression for doubly truncated data pp. 481-487

- Micha Mandel, Jacobo de Uña†à lvarez, David K. Simon and Rebecca A. Betensky
- A semiparametric likelihood†based method for regression analysis of mixed panel†count data pp. 488-497

- Liang Zhu, Ying Zhang, Yimei Li, Jianguo Sun and Leslie L. Robison
- Monte Carlo methods for nonparametric regression with heteroscedastic measurement error pp. 498-505

- Julie McIntyre, Brent A. Johnson and Stephen M. Rappaport
- Optimal treatment assignment to maximize expected outcome with multiple treatments pp. 506-516

- Zhilan Lou, Jun Shao and Menggang Yu
- Estimation and evaluation of linear individualized treatment rules to guarantee performance pp. 517-528

- Xin Qiu, Donglin Zeng and Yuanjia Wang
- Adaptive designs for the one†sample log†rank test pp. 529-537

- Rene Schmidt, Andreas Faldum and Robert Kwiecien
- Experimental design for multi†drug combination studies using signaling networks pp. 538-547

- Hengzhen Huang, Hong†Bin Fang and Ming T. Tan
- A matrix†based method of moments for fitting multivariate network meta†analysis models with multiple outcomes and random inconsistency effects pp. 548-556

- Dan Jackson, Sylwia Bujkiewicz, Martin Law, Richard D. Riley and Ian White
- Risk prediction for heterogeneous populations with application to hospital admission prediction pp. 557-565

- Jared D. Huling, Menggang Yu, Muxuan Liang and Maureen Smith
- Regularity of a renewal process estimated from binary data pp. 566-574

- John D. Rice, Robert L. Strawderman and Brent A. Johnson
- Analysis of restricted mean survival time for length†biased data pp. 575-583

- Chi Hyun Lee, Jing Ning and Yu Shen
- Clustering distributions with the marginalized nested Dirichlet process pp. 584-594

- Daiane Aparecida Zuanetti, Peter Müller, Yitan Zhu, Shengjie Yang and Yuan Ji
- Covariate†adjusted Spearman's rank correlation with probability†scale residuals pp. 595-605

- Qi Liu, Chun Li, Valentine Wanga and Bryan E. Shepherd
- Heterogeneous reciprocal graphical models pp. 606-615

- Yang Ni, Peter Müller, Yitan Zhu and Yuan Ji
- Estimation of cis†eQTL effect sizes using a log of linear model pp. 616-625

- John Palowitch, Andrey Shabalin, Yi†Hui Zhou, Andrew B. Nobel and Fred A. Wright
- Continuous†time capture–recapture in closed populations pp. 626-635

- Matthew R. Schofield, Richard J. Barker and Nicholas Gelling
- Bayesian variable selection for multistate Markov models with interval†censored data in an ecological momentary assessment study of smoking cessation pp. 636-644

- Matthew D. Koslovsky, Michael D. Swartz, Wenyaw Chan, Luis Leon†Novelo, Anna V. Wilkinson, Darla E. Kendzor and Michael S. Businelle
- Fully Bayesian spectral methods for imaging data pp. 645-652

- Brian J. Reich, Joseph Guinness, Simon N. Vandekar, Russell T. Shinohara and Ana†Maria Staicu
- Testing for gene–environment interaction under exposure misspecification pp. 653-662

- Ryan Sun, Raymond J. Carroll, David C. Christiani and Xihong Lin
- Single index methods for evaluation of marker†guided treatment rules based on multivariate marker panels pp. 663-672

- Veronika Skrivankova and Patrick J. Heagerty
- Sample size determination for multilevel hierarchical designs using generalized linear mixed models pp. 673-684

- Anup Amatya and Dulal K. Bhaumik
- Improved dynamic predictions from joint models of longitudinal and survival data with time†varying effects using P†splines pp. 685-693

- Eleni†Rosalina Andrinopoulou, Paul H. C. Eilers, Johanna J. M. Takkenberg and Dimitris Rizopoulos
- Efficiency of two sample tests via the restricted mean survival time for analyzing event time observations pp. 694-702

- Lu Tian, Haoda Fu, Stephen J. Ruberg, Hajime Uno and Lee†Jen Wei
- Modeling the causal effect of treatment initiation time on survival: Application to HIV/TB co†infection pp. 703-713

- Liangyuan Hu, Joseph W. Hogan, Ann W. Mwangi and Abraham Siika
- Modeling associations between latent event processes governing time series of pulsing hormones pp. 714-724

- Huayu Liu, Nichole E. Carlson, Gary K. Grunwald and Alex J. Polotsky
- Cox regression model with doubly truncated data pp. 725-733

- Lior Rennert and Sharon X. Xie
- A C†index for recurrent event data: Application to hospitalizations among dialysis patients pp. 734-743

- Sehee Kim, Douglas E. Schaubel and Keith P. McCullough
- A two†stage model for wearable device data pp. 744-752

- Jiawei Bai, Yifei Sun, Jennifer A. Schrack, Ciprian M. Crainiceanu and Mei†Cheng Wang
- Case†only approach to identifying markers predicting treatment effects on the relative risk scale pp. 753-763

- James Y. Dai, C. Jason Liang, Michael LeBlanc, Ross L. Prentice and Holly Janes
- Reader Reaction: A note on testing and estimation in marker†set association study using semiparametric quantile regression kernel machine pp. 764-766

- Xiang Zhan and Michael C. Wu
- Rejoinder to “A note on testing and estimation in marker†set association study using semiparametric quantile regression kernel machine†pp. 767-768

- Dehan Kong, Arnab Maity, Fang†Chi Hsu and Jung†Ying Tzeng
- TREVOR HASTIE, ROBERT TIBSHIRANI, AND MARTIN WAINWRIGHT. Statistical Learning with Sparsity: The Lasso and Generalizations. Boca Raton: CRC Press pp. 769-769

- Ivan Kondofersky and Fabian J. Theis
- NORMAN MATLOFF. Parallel Computing for Data Science: With Examples in R, C++, and CUDA. Boca Raton: CRC Press pp. 770-770

- Dirk Eddelbuettel
- JAY HERSON. Data and Safety Monitoring Committees in Clinical Trials, 2nd edition. Boca Raton: CRC Press pp. 771-771

- Donna Pauler Ankerst
- RICHARD M. SIMON. Genomic Clinical Trials and Predictive Medicine. Cambridge: Cambridge University Press pp. 772-772

- Shigeyuki Matsui
- ARDO VAN DEN HOUT. Multi†State Survival Models for Interval†Censored Data. Boca Raton: CRC Press pp. 773-773

- Christopher Jackson
- IAN FOSTER, RAYID GHANI, RON S. JARMIN, FRAUKE KREUTER, JULIA LANE. Big Data and Social Science: A Practical Guide to Methods and Tools. Boca Raton: CRC Press pp. 774-775

- Elena A. Erosheva
- CLAUDIO CARINI, SANDEEP M. MENON, AND MARK CHANG, EDS. Clinical and Statistical Considerations in Personalized Medicine. Boca Raton: CRC Press pp. 775-776

- Ruth Pfeiffer
- DANIEL O. STRAM. Design, Analysis, and Interpretation of Genome†Wide Association Scans. Heidelberg: Springer pp. 777-778

- Min Zhang
- BILL SHIPLEY. Cause and Correlation in Biology: A User's Guide to Path Analysis, Structural Equations and Causal Inference with R, 2nd ed. United Kingdom: Cambridge University Press pp. 779-780

- Kathryn M. Irvine
Volume 74, issue 1, 2018
- Covariate selection with group lasso and doubly robust estimation of causal effects pp. 8-17

- Brandon Koch, David M. Vock and Julian Wolfson
- Incorporating Patient Preferences into Estimation of Optimal Individualized Treatment Rules pp. 18-26

- Emily L. Butler, Eric B. Laber, Sonia M. Davis and Michael R. Kosorok
- Evaluating principal surrogate markers in vaccine trials in the presence of multiphase sampling pp. 27-39

- Ying Huang
- A gatekeeping procedure to test a primary and a secondary endpoint in a group sequential design with multiple interim looks pp. 40-48

- Ajit C. Tamhane, Jiangtao Gou, Christopher Jennison, Cyrus R. Mehta and Teresa Curto
- Covariate†adjusted response†adaptive randomization for multi†arm clinical trials using a modified forward looking Gittins index rule pp. 49-57

- SofÃa S. Villar and William F. Rosenberger
- Outcome†dependent sampling with interval†censored failure time data pp. 58-67

- Qingning Zhou, Jianwen Cai and Haibo Zhou
- Semiparametric probit models with univariate and bivariate current†status data pp. 68-76

- Hao Liu and Jing Qin
- Simple and fast overidentified rank estimation for right†censored length†biased data and backward recurrence time pp. 77-85

- Yifei Sun, Kwun Chuen Gary Chan and Jing Qin
- A local agreement pattern measure based on hazard functions for survival outcomes pp. 86-99

- Tian Dai, Ying Guo, Limin Peng and Amita K. Manatunga
- A pairwise likelihood augmented Cox estimator for left†truncated data pp. 100-108

- Fan Wu, Sehee Kim, Jing Qin, Rajiv Saran and Yi Li
- FLCRM: Functional linear cox regression model pp. 109-117

- Dehan Kong, Joseph G. Ibrahim, Eunjee Lee and Hongtu Zhu
- Cox regression with dependent error in covariates pp. 118-126

- Yijian Huang and Ching†Yun Wang
- Functional multiple indicators, multiple causes measurement error models pp. 127-134

- Carmen D. Tekwe, Roger S. Zoh, Fuller W. Bazer, Guoyao Wu and Raymond J. Carroll
- Model†based bootstrapping when correcting for measurement error with application to logistic regression pp. 135-144

- John P. Buonaccorsi, Giovanni Romeo and Magne Thoresen
- Robust mislabel logistic regression without modeling mislabel probabilities pp. 145-154

- Hung Hung, Zhi†Yu Jou and Su†Yun Huang
- Computation of ancestry scores with mixed families and unrelated individuals pp. 155-164

- Yi†Hui Zhou, James S. Marron and Fred A. Wright
- Multiple phenotype association tests using summary statistics in genome†wide association studies pp. 165-175

- Zhonghua Liu and Xihong Lin
- Multivariate association analysis with somatic mutation data pp. 176-184

- Qianchuan He, Yang Liu, Ulrike Peters and Li Hsu
- Inferring network structure in non†normal and mixed discrete†continuous genomic data pp. 185-195

- Anindya Bhadra, Arvind Rao and Veerabhadran Baladandayuthapani
- Fast approximation of small p†values in permutation tests by partitioning the permutations pp. 196-206

- Brian D. Segal, Thomas Braun, Michael R. Elliott and Hui Jiang
- Global sensitivity analysis for repeated measures studies with informative drop†out: A semi†parametric approach pp. 207-219

- Daniel Scharfstein, Aidan McDermott, Iván DÃaz, Marco Carone, Nicola Lunardon and Ibrahim Turkoz
- A profile likelihood approach for longitudinal data analysis pp. 220-228

- Ziqi Chen, Man†Lai Tang and Wei Gao
- FPCA†based method to select optimal sampling schedules that capture between†subject variability in longitudinal studies pp. 229-238

- Meihua Wu, Ana Diez†Roux, Trivellore E. Raghunathan and Brisa N. Sánchez
- Model†free scoring system for risk prediction with application to hepatocellular carcinoma study pp. 239-248

- Weining Shen, Jing Ning, Ying Yuan, Anna S. Lok and Ziding Feng
- A Bayesian screening approach for hepatocellular carcinoma using multiple longitudinal biomarkers pp. 249-259

- Nabihah Tayob, Francesco Stingo, Kim†Anh Do, Anna S. F. Lok and Ziding Feng
- Conditional adaptive Bayesian spectral analysis of nonstationary biomedical time series pp. 260-269

- Scott A. Bruce, Martica H. Hall, Daniel J. Buysse and Robert T. Krafty
- BayesCAT: Bayesian co†estimation of alignment and tree pp. 270-279

- Heejung Shim and Bret Larget
- Estimating the size of an open population using sparse capture–recapture data pp. 280-288

- Richard Huggins, Jakub Stoklosa, Cameron Roach and Paul Yip
- Evaluating center performance in the competing risks setting: Application to outcomes of wait†listed end†stage renal disease patients pp. 289-299

- Sai H. Dharmarajan, Douglas E. Schaubel and Rajiv Saran
- Integrative analysis of transcriptomic and metabolomic data via sparse canonical correlation analysis with incorporation of biological information pp. 300-312

- Sandra E. Safo, Shuzhao Li and Qi Long
- Multi†subgroup gene screening using semi†parametric hierarchical mixture models and the optimal discovery procedure: Application to a randomized clinical trial in multiple myeloma pp. 313-320

- Shigeyuki Matsui, Hisashi Noma, Pingping Qu, Yoshio Sakai, Kota Matsui, Christoph Heuck and John Crowley
- Estimating the probability of clonal relatedness of pairs of tumors in cancer patients pp. 321-330

- Audrey Mauguen, Venkatraman E. Seshan, Irina Ostrovnaya and Colin B. Begg
- Profiling the effects of short time†course cold ischemia on tumor protein phosphorylation using a Bayesian approach pp. 331-341

- You Wu, Jeremy Gaskins, Maiying Kong and Susmita Datta
- Spatial Bayesian latent factor regression modeling of coordinate†based meta†analysis data pp. 342-353

- Silvia Montagna, Tor Wager, Lisa Feldman Barrett, Timothy D. Johnson and Thomas E. Nichols
- A note on marginalization of regression parameters from mixed models of binary outcomes pp. 354-361

- Donald Hedeker, Stephen H. C. du Toit, Hakan Demirtas and Robert D. Gibbons
- Why you cannot transform your way out of trouble for small counts pp. 362-368

- David I. Warton
- On the reliability of N†mixture models for count data pp. 369-377

- Richard J. Barker, Matthew R. Schofield, William A. Link and John R. Sauer
- Gerhard Tutz and Matthias Schmid. Modeling Discrete Time†to†Event Data. Heidelberg, Springer pp. 378-379

- Jan Beyersmann
- Chul Ahn, Moonseong Heo and Song Zhang. Sample Size Calculations for Clustered and Longitudinal Outcomes in Clinical Research. Boca Raton, CRC Press pp. 379-379

- Joel Michalek
- Marco Scutari and Jean†Baptiste Denis. Bayesian Networks: With Examples in R. Boca Raton, CRC Press pp. 379-380

- Prabhanjan Tattar
- Alex Bottle and Paul Aylin. Statistical Methods for Healthcare Performance Monitoring. Boca Raton, CRC Press pp. 381-382

- Christoph F. Kurz
- Jinqiao Duan. An Introduction to Stochastic Dynamics. New York, Cambridge University Press pp. 381-381

- Johannes Müller
- Niels G. Becker. Modeling to Inform Infectious Disease Control. Boca Raton, CRC Press pp. 382-383

- Christina Kuttler
- Robert Elashoff, Gang Li and Ning Li. Joint Modeling of Longitudinal and Time†to†Event Data. Boca Raton, CRC Press pp. 383-384

- Hélène Jacqmin†Gadda
- Max Kuhn and Kjell Johnson. Applied Predictive Modeling. New York, Springer pp. 383-383

- Dimitris Rizopoulos
| |