Computational Statistics & Data Analysis
1983 - 2025
Current editor(s): S.P. Azen From Elsevier Bibliographic data for series maintained by Catherine Liu (). Access Statistics for this journal.
Is something missing from the series or not right? See the RePEc data check for the archive and series.
Volume 94, issue C, 2016
- Nonlinear expectile regression with application to Value-at-Risk and expected shortfall estimation pp. 1-19

- Minjo Kim and Sangyeol Lee
- A triplot for multiclass classification visualisation pp. 20-32

- Sugnet Gardner-Lubbe
- Principal minimax support vector machine for sufficient dimension reduction with contaminated data pp. 33-48

- Jingke Zhou and Lixing Zhu
- Fast and accurate computation for kernel estimators pp. 49-62

- Qingguo Tang and Rohana J. Karunamuni
- A likelihood-free filtering method via approximate Bayesian computation in evaluating biological simulation models pp. 63-74

- Takanori Hasegawa, Atsushi Niida, Tomoya Mori, Teppei Shimamura, Rui Yamaguchi, Satoru Miyano, Tatsuya Akutsu and Seiya Imoto
- A semiparametric scale-mixture regression model and predictive recursion maximum likelihood pp. 75-85

- Ryan Martin and Zhen Han
- Diagnostic checking of the vector multiplicative error model pp. 86-97

- F.C. Ng, W.K. Li and Philip L.H. Yu
- A propensity score adjustment method for regression models with nonignorable missing covariates pp. 98-119

- Depeng Jiang, Puying Zhao and Niansheng Tang
- The Hawkes process with renewal immigration & its estimation with an EM algorithm pp. 120-135

- Spencer Wheatley, Vladimir Filimonov and Didier Sornette
- The generalized modified Weibull power series distribution: Theory and applications pp. 136-160

- S.F. Bagheri, E. Bahrami Samani and M. Ganjali
- Nonparametric estimation of a quantile density function by wavelet methods pp. 161-174

- Christophe Chesneau, Isha Dewan and Hassan Doosti
- A general procedure to combine estimators pp. 175-192

- F. Lavancier and P. Rochet
- Gaussian quadrature approximations in mixed hidden Markov models for longitudinal data: A simulation study pp. 193-209

- Maria Francesca Marino and Marco Alfó
- Parametric cost-effectiveness inference with skewed data pp. 210-220

- Ionut Bebu, George Luta, Thomas Mathew, Paul A. Kennedy and Brian K. Agan
- On stepwise pattern recovery of the fused Lasso pp. 221-237

- Junyang Qian and Jinzhu Jia
- A sequential logistic regression classifier based on mixed effects with applications to longitudinal data pp. 238-249

- Xin Zhang, Daniel R. Jeske, Jun Li and Vance Wong
- Multiobjective optimization of expensive-to-evaluate deterministic computer simulator models pp. 250-264

- Joshua Svenson and Thomas Santner
- Fixed factor analysis with clustered factor score constraint pp. 265-274

- Kohei Uno, Hironori Satomura and Kohei Adachi
- A modified local quadratic approximation algorithm for penalized optimization problems pp. 275-286

- Sangin Lee, Sunghoon Kwon and Yongdai Kim
- Adaptive conditional feature screening pp. 287-301

- Lu Lin and Jing Sun
- Jackknife empirical likelihood test for high-dimensional regression coefficients pp. 302-316

- Yangguang Zang, Sanguo Zhang, Qizhai Li and Qingzhao Zhang
- Interaction models for functional regression pp. 317-329

- Joseph Usset, Ana-Maria Staicu and Arnab Maity
- Simplicial principal component analysis for density functions in Bayes spaces pp. 330-350

- K. Hron, A. Menafoglio, M. Templ, K. Hrůzová and Peter Filzmoser
- Classification of multiple time signals using localized frequency characteristics applied to industrial process monitoring pp. 351-362

- Robert G. Aykroyd, Stuart Barber and Luke R. Miller
- Analysis of long series of longitudinal ordinal data using marginalized models pp. 363-371

- Keunbaik Lee, Insuk Sohn and Donguk Kim
- Multivariate Fay–Herriot models for small area estimation pp. 372-390

- Roberto Benavent and Domingo Morales
Volume 93, issue C, 2016
- Identifying connected components in Gaussian finite mixture models for clustering pp. 5-17

- Luca Scrucca
- Clustering with the multivariate normal inverse Gaussian distribution pp. 18-30

- O’Hagan, Adrian, Thomas Brendan Murphy, Isobel Claire Gormley, Paul D. McNicholas and Dimitris Karlis
- Model-based biclustering of clickstream data pp. 31-45

- Volodymyr Melnykov
- Mixture-based clustering for the ordered stereotype model pp. 46-75

- D. Fernández, R. Arnold and S. Pledger
- Mixtures of spatial spline regressions for clustering and classification pp. 76-85

- Hien D. Nguyen, Geoffrey J. McLachlan and Ian A. Wood
- Wavelet-based scalar-on-function finite mixture regression models pp. 86-96

- Adam Ciarleglio and R. Todd Ogden
- On the estimation of mixtures of Poisson regression models with large number of components pp. 97-106

- Panagiotis Papastamoulis, Marie-Laure Martin-Magniette and Cathy Maugis-Rabusseau
- Nonparametric estimation of species richness using discrete k-monotone distributions pp. 107-118

- Chew-Seng Chee and Yong Wang
- Finite mixture of nonlinear mixed-effects joint models in the presence of missing and mismeasured covariate, with application to AIDS studies pp. 119-130

- Xiaosun Lu, Yangxin Huang and Yiliang Zhu
- General framework and model building in the class of Hidden Mixture Transition Distribution models pp. 131-145

- Danilo Bolano and André Berchtold
- Latent profile analysis with nonnormal mixtures: A Monte Carlo examination of model selection using fit indices pp. 146-161

- Grant B. Morgan, Kari J. Hodge and Aaron R. Baggett
- Mixtures of quantile regressions pp. 162-176

- Qiang Wu and Weixin Yao
- Laplace mixture of linear experts pp. 177-191

- Hien D. Nguyen and Geoffrey J. McLachlan
- Modelling receiver operating characteristic curves using Gaussian mixtures pp. 192-208

- Amay S.M. Cheam and Paul D. McNicholas
- Maximum likelihood estimation and expectation–maximization algorithm for controlled branching processes pp. 209-227

- M. González, C. Minuesa and I. del Puerto
- EM algorithms for estimating the Bernstein copula pp. 228-245

- Xiaoling Dou, Satoshi Kuriki, Gwo Dong Lin and Donald Richards
- Transdimensional sequential Monte Carlo using variational Bayes — SMCVB pp. 246-254

- C.A. McGrory, A.N. Pettitt, D.M. Titterington, C.L. Alston and M. Kelly
- Partially linear transformation cure models for interval-censored data pp. 257-269

- Tao Hu and Liming Xiang
- Flexible estimation in cure survival models using Bayesian P-splines pp. 270-284

- Vincent Bremhorst and Philippe Lambert
- Empirical likelihood confidence regions for one- or two- samples with doubly censored data pp. 285-293

- Junshan Shen, Kam Chuen Yuen and Chunling Liu
- Nonparametric regression with doubly truncated data pp. 294-307

- C. Moreira, J. de Uña-Álvarez and L. Meira-Machado
- Parametrically guided nonparametric density and hazard estimation with censored data pp. 308-323

- Majda Talamakrouni, Ingrid Van Keilegom and Anouar El Ghouch
- The liability threshold model for censored twin data pp. 324-335

- Klaus K. Holst, Thomas H. Scheike and Jacob B. Hjelmborg
- Causal mediation analysis for survival outcome with unobserved mediator–outcome confounders pp. 336-347

- Peng Luo and Zhi Geng
- Goodness-of-fit test of the stratified mark-specific proportional hazards model with continuous mark pp. 348-358

- Yanqing Sun, Mei Li and Peter B. Gilbert
- Full Bayesian inference with hazard mixture models pp. 359-372

- Julyan Arbel, Antonio Lijoi and Bernardo Nipoti
- Bayesian network data imputation with application to survival tree analysis pp. 373-387

- Paola M.V. Rancoita, Marco Zaffalon, Emanuele Zucca, Francesco Bertoni and Cassio P. de Campos
- Sparse estimation of high-dimensional correlation matrices pp. 390-403

- Ying Cui, Chenlei Leng and Defeng Sun
- Robust estimation of precision matrices under cellwise contamination pp. 404-420

- G. Tarr, S. Müller and N.C. Weber
- Robust groupwise least angle regression pp. 421-435

- Andreas Alfons, Christophe Croux and Sarah Gelper
- Robust tests for linear regression models based on τ-estimates pp. 436-455

- Matias Salibian-Barrera, Stefan Van Aelst and Víctor J. Yohai
- Minimum volume peeling: A robust nonparametric estimator of the multivariate mode pp. 456-468

- T. Kirschstein, S. Liebscher, G.C. Porzio and G. Ragozini
- New upper bounds for tight and fast approximation of Fisher’s exact test in dependency rule mining pp. 469-482

- Wilhelmiina Hämäläinen
- Noise peeling methods to improve boosting algorithms pp. 483-497

- Waldyn Martinez and J. Brian Gray
| |