Computational Statistics & Data Analysis
1983 - 2025
Current editor(s): S.P. Azen From Elsevier Bibliographic data for series maintained by Catherine Liu (). Access Statistics for this journal.
Is something missing from the series or not right? See the RePEc data check for the archive and series.
Volume 71, issue C, 2014
- Model based clustering of customer choice data pp. 3-13

- Donatella Vicari and Marco Alfó
- Clustering longitudinal profiles using P-splines and mixed effects models applied to time-course gene expression data pp. 14-29

- N. Coffey, J. Hinde and E. Holian
- A new semi-parametric mixture model for interval censored data, with applications in the field of antimicrobial resistance pp. 30-42

- Stijn Jaspers, Marc Aerts, Geert Verbeke and Pierre-Alexandre Beloeil
- Mixture models for clustering multilevel growth trajectories pp. 43-51

- S.K. Ng and G.J. McLachlan
- Model-based clustering of high-dimensional data: A review pp. 52-78

- Charles Bouveyron and Camille Brunet-Saumard
- A hierarchical modeling approach for clustering probability density functions pp. 79-91

- Daniela G. Calò, Angela Montanari and Cinzia Viroli
- Model-based clustering for multivariate functional data pp. 92-106

- Julien Jacques and Cristian Preda
- A combined likelihood ratio/information ratio bootstrap technique for estimating the number of components in finite mixtures pp. 107-115

- Athanase Polymenis
- Robust mixture regression using the t-distribution pp. 116-127

- Weixin Yao, Yan Wei and Chun Yu
- Robust mixture regression model fitting by Laplace distribution pp. 128-137

- Weixing Song, Weixin Yao and Yanru Xing
- A multivariate linear regression analysis using finite mixtures of t distributions pp. 138-150

- Giuliano Galimberti and Gabriele Soffritti
- Zero-inflated Poisson regression mixture model pp. 151-158

- Hwa Kyung Lim, Wai Keung Li and Philip L.H. Yu
- Model-based clustering via linear cluster-weighted models pp. 159-182

- Salvatore Ingrassia, Simona C. Minotti and Antonio Punzo
- Learning from incomplete data via parameterized t mixture models through eigenvalue decomposition pp. 183-195

- Tsung-I Lin
- Parsimonious skew mixture models for model-based clustering and classification pp. 196-210

- Irene Vrbik and Paul D. McNicholas
- Nonparametric estimation of the mixing distribution in logistic regression mixed models with random intercepts and slopes pp. 211-219

- Mary Lesperance, Rabih Saab and John Neuhaus
- Robust growth mixture models with non-ignorable missingness: Models, estimation, selection, and application pp. 220-240

- Lu, Zhenqiu (Laura) and Zhiyong Zhang
- Multivariate methods using mixtures: Correspondence analysis, scaling and pattern-detection pp. 241-261

- Shirley Pledger and Richard Arnold
- Mixtures of equispaced normal distributions and their use for testing symmetry with univariate data pp. 262-272

- Silvia Bacci and Francesco Bartolucci
- State space mixed models for binary responses with scale mixture of normal distributions links pp. 274-287

- Carlos A. Abanto-Valle and Dipak K. Dey
- Optimal sequential designs in phase I studies pp. 288-297

- David Azriel
- Bayesian forecasting with small and medium scale factor-augmented vector autoregressive DSGE models pp. 298-323

- Stelios Bekiros and Alessia Paccagnini
- A hierarchical Bayes model for biomarker subset effects in clinical trials pp. 324-334

- Bingshu E. Chen, Wenyu Jiang and Dongsheng Tu
- Bayesian nonparametric k-sample tests for censored and uncensored data pp. 335-346

- Yuhui Chen and Timothy E. Hanson
- Fast Bayesian model assessment for nonparametric additive regression pp. 347-358

- S. McKay Curtis, Sayantan Banerjee and Subhashis Ghosal
- Characterising economic trends by Bayesian stochastic model specification search pp. 359-374

- Stefano Grassi and Tommaso Proietti
- An evolutionary Monte Carlo algorithm for Bayesian block clustering of data matrices pp. 375-391

- Mayetri Gupta
- Computation of marginal likelihoods with data-dependent support for latent variables pp. 392-401

- Sarah E. Heaps, Richard J. Boys and Malcolm Farrow
- Use of SAMC for Bayesian analysis of statistical models with intractable normalizing constants pp. 402-416

- Ick Hoon Jin and Faming Liang
- Dependent mixture models: Clustering and borrowing information pp. 417-433

- Antonio Lijoi, Bernardo Nipoti and Igor Prünster
- Simulation-based Bayesian inference for epidemic models pp. 434-447

- Trevelyan J. McKinley, Joshua V. Ross, Rob Deardon and Alex R. Cook
- Prior adjusted default Bayes factors for testing (in)equality constrained hypotheses pp. 448-463

- Joris Mulder
- Bayesian binary regression with exponential power link pp. 464-476

- L. Naranjo, J. Martín and C.J. Pérez
- Bayesian semiparametric analysis of short- and long-term hazard ratios with covariates pp. 477-490

- Luis E. Nieto-Barajas
- Mixtures of experts for understanding model discrepancy in dynamic computer models pp. 491-505

- David J. Nott, Lucy Marshall, Mark Fielding and Shie-Yui Liong
- A Bayesian model for longitudinal circular data based on the projected normal distribution pp. 506-519

- Gabriel Nuñez-Antonio and Eduardo Gutiérrez-Peña
- One-sample Bayes inference for symmetric distributions of 3-D rotations pp. 520-529

- Yu Qiu, Daniel J. Nordman and Stephen B. Vardeman
- Bayesian analysis of a Gibbs hard-core point pattern model with varying repulsion range pp. 530-541

- T. Rajala and A. Penttinen
- Bayesian Dirichlet mixture model for multivariate extremes: A re-parametrization pp. 542-567

- Anne Sabourin and Philippe Naveau
- Bayesian analysis of tail asymmetry based on a threshold extreme value model pp. 568-587

- Mike K.P. So and Raymond K.S. Chan
- Incorporation of gene exchangeabilities improves the reproducibility of gene set rankings pp. 588-598

- Charlotte Soneson and Magnus Fontes
- Modelling species abundance in a river by Negative Binomial hidden Markov models pp. 599-614

- L. Spezia, S.L. Cooksley, M.J. Brewer, D. Donnelly and A. Tree
- Reversible jump MCMC for nonparametric drift estimation for diffusion processes pp. 615-632

- Frank van der Meulen, Moritz Schauer and Harry van Zanten
- Linear Bayes estimator for the two-parameter exponential family under type II censoring pp. 633-642

- Lichun Wang and Radhey S. Singh
- GPU accelerated MCMC for modeling terrorist activity pp. 643-651

- Gentry White and Michael D. Porter
- Hypercube estimators: Penalized least squares, submodel selection, and numerical stability pp. 654-666

- Rudolf Beran
- Data mining for longitudinal data under multicollinearity and time dependence using penalized generalized estimating equations pp. 667-680

- A. Blommaert, N. Hens and Ph. Beutels
- Analysis of feature selection stability on high dimension and small sample data pp. 681-693

- David Dernoncourt, Blaise Hanczar and Jean-Daniel Zucker
- On selecting interacting features from high-dimensional data pp. 694-708

- Peter Hall and Jing-Hao Xue
- Linear instrumental variables model averaging estimation pp. 709-724

- Luis Martins and Vasco Gabriel
- Using random subspace method for prediction and variable importance assessment in linear regression pp. 725-742

- Jan Mielniczuk and Paweł Teisseyre
- LOL selection in high dimension pp. 743-757

- M. Mougeot, D. Picard and K. Tribouley
- Model selection and model averaging after multiple imputation pp. 758-770

- Michael Schomaker and Christian Heumann
- Sparse group lasso and high dimensional multinomial classification pp. 771-786

- Martin Vincent and Niels Richard Hansen
- Classification with decision trees from a nonparametric predictive inference perspective pp. 789-802

- Joaquín Abellán, Rebecca M. Baker, Frank P.A. Coolen, Richard J. Crossman and Andrés R. Masegosa
- Bootstrap confidence sets for the Aumann mean of a random closed set pp. 803-817

- Christine Choirat and Raffaello Seri
- Credal ensembles of classifiers pp. 818-831

- G. Corani and A. Antonucci
- Estimating mutual information for feature selection in the presence of label noise pp. 832-848

- Benoît Frénay, Gauthier Doquire and Michel Verleysen
- Computational issues of generalized fiducial inference pp. 849-858

- Jan Hannig, Randy C.S. Lai and Thomas C.M. Lee
- Optimal experimental designs for partial likelihood information pp. 859-867

- J. López-Fidalgo and M.J. Rivas-López
- Stochastic dominance with imprecise information pp. 868-886

- Ignacio Montes, Enrique Miranda and Susana Montes
- Reduced-rank vector generalized linear models with two linear predictors pp. 889-902

- Thomas W. Yee
- Transform both sides model: A parametric approach pp. 903-913

- A. Polpo, C.P. de Campos, D. Sinha, S. Lipsitz and J. Lin
- Maximum likelihood estimation of spatially and serially correlated panels with random effects pp. 914-933

- Giovanni Millo
- Basic Singular Spectrum Analysis and forecasting with R pp. 934-954

- Nina Golyandina and Anton Korobeynikov
- Parameter estimation for the 4-parameter Asymmetric Exponential Power distribution by the method of L-moments using R pp. 955-970

- William H. Asquith
- MultiLCIRT: An R package for multidimensional latent class item response models pp. 971-985

- Francesco Bartolucci, Silvia Bacci and Michela Gnaldi
- (Psycho-)analysis of benchmark experiments: A formal framework for investigating the relationship between data sets and learning algorithms pp. 986-1000

- Manuel J.A. Eugster, Friedrich Leisch and Carolin Strobl
- Discretization-based direct random sample generation pp. 1001-1010

- Liqun Wang and Chel Hee Lee
- Generating beta random numbers and Dirichlet random vectors in R: The package rBeta2009 pp. 1011-1020

- Ching-Wei Cheng, Ying-Chao Hung and Narayanaswamy Balakrishnan
- KrigInv: An efficient and user-friendly implementation of batch-sequential inversion strategies based on kriging pp. 1021-1034

- Clément Chevalier, Victor Picheny and David Ginsbourger
- Noisy kriging-based optimization methods: A unified implementation within the DiceOptim package pp. 1035-1053

- Victor Picheny and David Ginsbourger
- RcppArmadillo: Accelerating R with high-performance C++ linear algebra pp. 1054-1063

- Dirk Eddelbuettel and Conrad Sanderson
- Bayesian D-optimal designs for the two parameter logistic mixed effects model pp. 1066-1076

- Haftom T. Abebe, Frans E.S. Tan, Gerard J.P. Van Breukelen and Martijn P.F. Berger
- Experimental designs for drug combination studies pp. 1077-1087

- B. Almohaimeed and A.N. Donev
- Optimal design for correlated processes with input-dependent noise pp. 1088-1102

- A. Boukouvalas, D. Cornford and M. Stehlík
- ‘Nearly’ universally optimal designs for models with correlated observations pp. 1103-1112

- Holger Dette, Andrey Pepelyshev and Anatoly Zhigljavsky
- Algorithms for approximate linear regression design with application to a first order model with heteroscedasticity pp. 1113-1123

- N. Gaffke, U. Graßhoff and R. Schwabe
- A class of composite designs for response surface methodology pp. 1124-1133

- Stelios D. Georgiou, Stella Stylianou and Manohar Aggarwal
- An efficient procedure for the avoidance of disconnected incomplete block designs pp. 1134-1146

- J.D. Godolphin and H.R. Warren
- Augmenting supersaturated designs with Bayesian D-optimality pp. 1147-1158

- Alex J. Gutman, Edward D. White, Dennis K.J. Lin and Raymond R. Hill
- Computing efficient exact designs of experiments using integer quadratic programming pp. 1159-1167

- Radoslav Harman and Lenka Filová
- Construction of experimental designs for estimating variance components pp. 1168-1177

- S. Loeza-Serrano and A.N. Donev
- Optimal designed experiments using a Pareto front search for focused preference of multiple objectives pp. 1178-1192

- Lu Lu, Christine M. Anderson-Cook and Dennis K.J. Lin
- A coordinate-exchange two-phase local search algorithm for the D- and I-optimal designs of split-plot experiments pp. 1193-1207

- Francesco Sambo, Matteo Borrotti and Kalliopi Mylona
- Integral approximations for computing optimum designs in random effects logistic regression models pp. 1208-1220

- C. Tommasi, J.M. Rodríguez-Díaz and M.T. Santos-Martín
| |