Journal of the Royal Statistical Society Series B
1997 - 2022
Current editor(s): P. Fryzlewicz and I. Van Keilegom From Royal Statistical Society Contact information at EDIRC. Bibliographic data for series maintained by Wiley Content Delivery (). Access Statistics for this journal.
Is something missing from the series or not right? See the RePEc data check for the archive and series.
Volume 83, issue 5, 2021
- Analysis of networks via the sparse β‐model pp. 887-910

- Mingli Chen, Kengo Kato and Chenlei Leng
- Conformal inference of counterfactuals and individual treatment effects pp. 911-938

- Lihua Lei and Emmanuel J. Candès
- Two‐sample inference for high‐dimensional Markov networks pp. 939-962

- Byol Kim, Song Liu and Mladen Kolar
- Isotonic distributional regression pp. 963-993

- Alexander Henzi, Johanna F. Ziegel and Tilmann Gneiting
- Model‐assisted analyses of cluster‐randomized experiments pp. 994-1015

- Fangzhou Su and Peng Ding
- Inference of heterogeneous treatment effects using observational data with high‐dimensional covariates pp. 1016-1043

- Yumou Qiu, Jing Tao and Xiao‐Hua Zhou
- On identifiability and consistency of the nugget in Gaussian spatial process models pp. 1044-1070

- Wenpin Tang, Lu Zhang and Sudipto Banerjee
Volume 83, issue 4, 2021
- Inference on the history of a randomly growing tree pp. 639-668

- Harry Crane and Min Xu
- Optimal statistical inference for individualized treatment effects in high‐dimensional models pp. 669-719

- Tianxi Cai, T. Tony Cai and Zijian Guo
- Covariate powered cross‐weighted multiple testing pp. 720-751

- Nikolaos Ignatiadis and Wolfgang Huber
- The confidence interval method for selecting valid instrumental variables pp. 752-776

- Frank Windmeijer, Xiaoran Liang, Fernando P. Hartwig and Jack Bowden
- Leveraging the Fisher randomization test using confidence distributions: Inference, combination and fusion learning pp. 777-797

- Xiaokang Luo, Tirthankar Dasgupta, Minge Xie and Regina Y. Liu
- Spatial birth–death–move processes: Basic properties and estimation of their intensity functions pp. 798-825

- Frédéric Lavancier and Ronan Le Guével
- Joint quantile regression for spatial data pp. 826-852

- Xu Chen and Surya T. Tokdar
- Approximate Laplace approximations for scalable model selection pp. 853-879

- David Rossell, Oriol Abril and Anirban Bhattacharya
- Wang and Leng (2016), High‐dimensional ordinary least‐squares projection for screening variables, Journal of the Royal Statistical Society Series B, 78, 589–611 pp. 880-881

- Xiangyu Wang, Chenlei Leng and Tom Boot
- Errata to “Functional models for time‐varying random objects” pp. 883-883

- Paromita Dubey and Hans‐Georg Müller
Volume 83, issue 3, 2021
- Prior sample size extensions for assessing prior impact and prior‐likelihood discordance pp. 413-437

- Matthew Reimherr, Xiao‐Li Meng and Dan L. Nicolae
- Valid and approximately valid confidence intervals for current status data pp. 438-452

- Sungwook Kim, Michael P. Fay and Michael A. Proschan
- Variable selection with ABC Bayesian forests pp. 453-481

- Yi Liu, Veronika Ročková and Yuexi Wang
- Increasing power for observational studies of aberrant response: An adaptive approach pp. 482-504

- Siyu Heng, Hyunseung Kang, Dylan S. Small and Colin B. Fogarty
- AMF: Aggregated Mondrian forests for online learning pp. 505-533

- Jaouad Mourtada, Stéphane Gaïffas and Erwan Scornet
- GGM knockoff filter: False discovery rate control for Gaussian graphical models pp. 534-558

- Jinzhou Li and Marloes H. Maathuis
- Estimation of causal quantile effects with a binary instrumental variable and censored data pp. 559-578

- Bo Wei, Limin Peng, Mei‐Jie Zhang and Jason P. Fine
- Modelling high‐dimensional categorical data using nonconvex fusion penalties pp. 579-611

- Benjamin G. Stokell, Rajen D. Shah and Ryan J. Tibshirani
- Instrument residual estimator for any response variable with endogenous binary treatment pp. 612-635

- Myoung-jae Lee
Volume 83, issue 2, 2021
- Anchor regression: Heterogeneous data meet causality pp. 215-246

- Dominik Rothenhäusler, Nicolai Meinshausen, Peter Bühlmann and Jonas Peters
- Finite sample change point inference and identification for high‐dimensional mean vectors pp. 247-270

- Mengjia Yu and Xiaohui Chen
- Iterative Alpha Expansion for estimating gradient‐sparse signals from linear measurements pp. 271-292

- Sheng Xu and Zhou Fan
- Estimation and clustering in popularity adjusted block model pp. 293-317

- Majid Noroozi, Ramchandra Rimal and Marianna Pensky
- Estimating optimal treatment rules with an instrumental variable: A partial identification learning approach pp. 318-345

- Hongming Pu and Bo Zhang
- Nonparametric density estimation over complicated domains pp. 346-368

- Federico Ferraccioli, Eleonora Arnone, Livio Finos, James O. Ramsay and Laura M. Sangalli
- Principal manifold estimation via model complexity selection pp. 369-394

- Kun Meng and Ani Eloyan
- On optimal rerandomization designs pp. 395-403

- Per Johansson, Donald B. Rubin and Mårten Schultzberg
- On the optimality of randomization in experimental design: How to randomize for minimax variance and design‐based inference pp. 404-409

- Nathan Kallus
Volume 83, issue 1, 2021
- Report of the Editors—2020 pp. 3-4

- Aurore Delaigle and Simon Wood
- Construction of blocked factorial designs to estimate main effects and selected two‐factor interactions pp. 5-29

- J. D. Godolphin
- Use of model reparametrization to improve variational Bayes pp. 30-57

- Linda S. L. Tan
- Statistical inferences of linear forms for noisy matrix completion pp. 58-77

- Dong Xia and Ming Yuan
- Small area estimation with linked data pp. 78-107

- N. Salvati, E. Fabrizi, M. G. Ranalli and R. L. Chambers
- Smoothing splines on Riemannian manifolds, with applications to 3D shape space pp. 108-132

- Kwang‐Rae Kim, Ian L. Dryden, Huiling Le and Katie E. Severn
- Optimal control of false discovery criteria in the two‐group model pp. 133-155

- Ruth Heller and Saharon Rosset
- Gibbs flow for approximate transport with applications to Bayesian computation pp. 156-187

- Jeremy Heng, Arnaud Doucet and Yvo Pokern
- The proximal Robbins–Monro method pp. 188-212

- Panos Toulis, Thibaut Horel and Edoardo M. Airoldi
Volume 82, issue 5, 2020
- Quasi‐stationary Monte Carlo and the ScaLE algorithm pp. 1167-1221

- Murray Pollock, Paul Fearnhead, Adam Johansen and Gareth O. Roberts
- An information theoretic approach for selecting arms in clinical trials pp. 1223-1247

- Pavel Mozgunov and Thomas Jaki
- Estimating densities with non‐linear support by using Fisher–Gaussian kernels pp. 1249-1271

- Minerva Mukhopadhyay, Didong Li and David B. Dunson
- A simple new approach to variable selection in regression, with application to genetic fine mapping pp. 1273-1300

- Gao Wang, Abhishek Sarkar, Peter Carbonetto and Matthew Stephens
- Robust tests for treatment effect in survival analysis under covariate‐adaptive randomization pp. 1301-1323

- Ting Ye and Jun Shao
- Beta–negative binomial auto‐regressions for modelling integer‐valued time series with extreme observations pp. 1325-1347

- Paolo Gorgi
- Modified likelihood root in high dimensions pp. 1349-1369

- Yanbo Tang and Nancy Reid
- Spatiotemporal modelling using integro‐difference equations with bivariate stable kernels pp. 1371-1392

- Robert Richardson, Athanasios Kottas and Bruno Sansó
Volume 82, issue 4, 2020
- Graphical models for extremes pp. 871-932

- Sebastian Engelke and Adrien S. Hitz
- A unified data‐adaptive framework for high dimensional change point detection pp. 933-963

- Bin Liu, Cheng Zhou, Xinsheng Zhang and Yufeng Liu
- A scalable estimate of the out‐of‐sample prediction error via approximate leave‐one‐out cross‐validation pp. 965-996

- Kamiar Rahnama Rad and Arian Maleki
- False discovery and its control in low rank estimation pp. 997-1027

- Armeen Taeb, Parikshit Shah and Venkat Chandrasekaran
- Adaptive designs for optimal observed Fisher information pp. 1029-1058

- Adam Lane
- Visualizing the effects of predictor variables in black box supervised learning models pp. 1059-1086

- Daniel W. Apley and Jingyu Zhu
- Quasi‐Bayes properties of a procedure for sequential learning in mixture models pp. 1087-1114

- Sandra Fortini and Sonia Petrone
- Superconsistent estimation of points of impact in non‐parametric regression with functional predictors pp. 1115-1140

- Dominik Poß, Dominik Liebl, Alois Kneip, Hedwig Eisenbarth, Tor D. Wager and Lisa Feldman Barrett
- Optimal alpha spending for sequential analysis with binomial data pp. 1141-1164

- Ivair R. Silva, Martin Kulldorff and W. Katherine Yih
Volume 82, issue 3, 2020
- Unbiased Markov chain Monte Carlo methods with couplings pp. 543-600

- Pierre E. Jacob, John O’Leary and Yves F. Atchadé
- Robust estimation via robust gradient estimation pp. 601-627

- Adarsh Prasad, Arun Sai Suggala, Sivaraman Balakrishnan and Pradeep Ravikumar
- Testing relevant hypotheses in functional time series via self‐normalization pp. 629-660

- Holger Dette, Kevin Kokot and Stanislav Volgushev
- Causal mediation analysis for stochastic interventions pp. 661-683

- Iván Díaz and Nima S. Hejazi
- A flexible framework for hypothesis testing in high dimensions pp. 685-718

- Adel Javanmard and Jason D. Lee
- Causal isotonic regression pp. 719-747

- Ted Westling, Peter Gilbert and Marco Carone
- Optimal, two‐stage, adaptive enrichment designs for randomized trials, using sparse linear programming pp. 749-772

- Michael Rosenblum, Ethan X. Fang and Han Liu
- Goodness‐of‐fit testing in high dimensional generalized linear models pp. 773-795

- Jana Janková, Rajen D. Shah, Peter Bühlmann and Richard J. Samworth
- Inference for two‐stage sampling designs pp. 797-815

- Guillaume Chauvet and Audrey‐Anne Vallée
- On bandwidth choice for spatial data density estimation pp. 817-840

- Zhenyu Jiang, Nengxiang Ling, Zudi Lu, Dag Tj⊘stheim and Qiang Zhang
- Robust testing in generalized linear models by sign flipping score contributions pp. 841-864

- Jesse Hemerik, Jelle J. Goeman and Livio Finos
- Reply to the correction by Grover and Kaur: a new randomized response model pp. 865-868

- Sarjinder Singh
Volume 82, issue 2, 2020
- Functional models for time‐varying random objects pp. 275-327

- Paromita Dubey and Hans‐Georg Müller
- Sparse principal component analysis via axis‐aligned random projections pp. 329-359

- Milana Gataric, Tengyao Wang and Richard J. Samworth
- Right singular vector projection graphs: fast high dimensional covariance matrix estimation under latent confounding pp. 361-389

- Rajen D. Shah, Benjamin Frot, Gian‐Andrea Thanei and Nicolai Meinshausen
- Semisupervised inference for explained variance in high dimensional linear regression and its applications pp. 391-419

- T. Tony Cai and Zijian Guo
- Model misspecification in approximate Bayesian computation: consequences and diagnostics pp. 421-444

- David T. Frazier, Christian P. Robert and Judith Rousseau
- Doubly robust inference when combining probability and non‐probability samples with high dimensional data pp. 445-465

- Shu Yang, Jae Kwang Kim and Rui Song
- Sumca: simple, unified, Monte‐Carlo‐assisted approach to second‐order unbiased mean‐squared prediction error estimation pp. 467-485

- Jiming Jiang and Mahmoud Torabi
- Exchangeable random measures for sparse and modular graphs with overlapping communities pp. 487-520

- Adrien Todeschini, Xenia Miscouridou and François Caron
- Multiply robust causal inference with double‐negative control adjustment for categorical unmeasured confounding pp. 521-540

- Xu Shi, Wang Miao, Jennifer C. Nelson and Eric J. Tchetgen Tchetgen
Volume 82, issue 1, 2020
- Report of the Editors—2019 pp. 3-4

- David Dunson and Simon Wood
- Multiscale inference and long‐run variance estimation in non‐parametric regression with time series errors pp. 5-37

- Marina Khismatullina and Michael Vogt
- Making sense of sensitivity: extending omitted variable bias pp. 39-67

- Carlos Cinelli and Chad Hazlett
- Renewable estimation and incremental inference in generalized linear models with streaming data sets pp. 69-97

- Lan Luo and Peter X.‐K. Song
- Targeted sampling from massive block model graphs with personalized PageRank pp. 99-126

- Fan Chen, Yini Zhang and Karl Rohe
- A Bayesian hierarchical model for related densities by using Pólya trees pp. 127-153

- Jonathan Christensen and Li Ma
- Bayesian empirical likelihood inference with complex survey data pp. 155-174

- Puying Zhao, Malay Ghosh, J. N. K. Rao and Changbao Wu
- The conditional permutation test for independence while controlling for confounders pp. 175-197

- Thomas B. Berrett, Yi Wang, Rina Foygel Barber and Richard J. Samworth
- Robust inference on population indirect causal effects: the generalized front door criterion pp. 199-214

- Isabel R. Fulcher, Ilya Shpitser, Stella Marealle and Eric J. Tchetgen Tchetgen
- Multivariate type G Matérn stochastic partial differential equation random fields pp. 215-239

- David Bolin and Jonas Wallin
- Rerandomization and regression adjustment pp. 241-268

- Xinran Li and Peng Ding
- Correction: ‘A new randomized response model’ pp. 269-271

- Lovleen Kumar Grover and Amanpreet Kaur
| |