International Journal of Forecasting
1985 - 2025
Current editor(s): R. J. Hyndman From Elsevier Bibliographic data for series maintained by Catherine Liu (). Access Statistics for this journal.
Is something missing from the series or not right? See the RePEc data check for the archive and series.
Volume 38, issue 4, 2022
- Retail forecasting: Research and practice pp. 1283-1318

- Robert Fildes, Shaohui Ma and Stephan Kolassa
- Post-script—Retail forecasting: Research and practice pp. 1319-1324

- Robert Fildes, Stephan Kolassa and Shaohui Ma
- The M5 competition: Background, organization, and implementation pp. 1325-1336

- Spyros Makridakis, Evangelos Spiliotis and Vassilios Assimakopoulos
- Predicting/hypothesizing the findings of the M5 competition pp. 1337-1345

- Spyros Makridakis, Evangelos Spiliotis and Vassilios Assimakopoulos
- M5 accuracy competition: Results, findings, and conclusions pp. 1346-1364

- Spyros Makridakis, Evangelos Spiliotis and Vassilios Assimakopoulos
- The M5 uncertainty competition: Results, findings and conclusions pp. 1365-1385

- Spyros Makridakis, Evangelos Spiliotis, Vassilios Assimakopoulos, Zhi Chen, Anil Gaba, Ilia Tsetlin and Robert L. Winkler
- Simple averaging of direct and recursive forecasts via partial pooling using machine learning pp. 1386-1399

- YeonJun In and Jae-Yoon Jung
- A fast and scalable ensemble of global models with long memory and data partitioning for the M5 forecasting competition pp. 1400-1404

- Kasun Bandara, Hansika Hewamalage, Rakshitha Godahewa and Puwasala Gamakumara
- Hierarchical forecasting with a top-down alignment of independent-level forecasts pp. 1405-1414

- Matthias Anderer and Feng Li
- Robust recurrent network model for intermittent time-series forecasting pp. 1415-1425

- Yunho Jeon and Sihyeon Seong
- Forecasting with gradient boosted trees: augmentation, tuning, and cross-validation strategies pp. 1426-1433

- A. David Lainder and Russell D. Wolfinger
- GoodsForecast second-place solution in M5 Uncertainty track: Combining heterogeneous models for a quantile estimation task pp. 1434-1441

- Nikolay Mamonov, Evgeny Golubyatnikov, Daniel Kanevskiy and Igor Gusakov
- A solution for M5 Forecasting - Uncertainty: Hybrid gradient boosting and autoregressive recurrent neural network for quantile estimation pp. 1442-1447

- Ernest Chiew and Shin Siang Choong
- Blending gradient boosted trees and neural networks for point and probabilistic forecasting of hierarchical time series pp. 1448-1459

- Ioannis Nasios and Konstantinos Vogklis
- A white-boxed ISSM approach to estimate uncertainty distributions of Walmart sales pp. 1460-1467

- Rafael de Rezende, Katharina Egert, Ignacio Marin and Guilherme Thompson
- Applicability of the M5 to Forecasting at Walmart pp. 1468-1472

- Brian Seaman and John Bowman
- Forecasting with trees pp. 1473-1481

- Tim Januschowski, Yuyang Wang, Kari Torkkola, Timo Erkkilä, Hilaf Hasson and Jan Gasthaus
- Transfer learning for hierarchical forecasting: Reducing computational efforts of M5 winning methods pp. 1482-1491

- Arnoud P. Wellens, Maxi Udenio and Robert N. Boute
- The performance of the global bottom-up approach in the M5 accuracy competition: A robustness check pp. 1492-1499

- Shaohui Ma and Robert Fildes
- Exploring the representativeness of the M5 competition data pp. 1500-1506

- Evangelos Theodorou, Shengjie Wang, Yanfei Kang, Evangelos Spiliotis, Spyros Makridakis and Vassilios Assimakopoulos
- Exploring the social influence of the Kaggle virtual community on the M5 competition pp. 1507-1518

- Xixi Li, Yun Bai and Yanfei Kang
- Fathoming empirical forecasting competitions’ winners pp. 1519-1525

- Azzam Alroomi, Georgios Karamatzanis, Konstantinos Nikolopoulos, Anna Tilba and Shujun Xiao
- The uncertainty track: Machine learning, statistical modeling, synthesis pp. 1526-1530

- John Ord
- Evaluating quantile forecasts in the M5 uncertainty competition pp. 1531-1545

- Zhi Chen, Anil Gaba, Ilia Tsetlin and Robert L. Winkler
- M5 competition uncertainty: Overdispersion, distributional forecasting, GAMLSS, and beyond pp. 1546-1554

- Florian Ziel
- Understanding machine learning-based forecasting methods: A decomposition framework and research opportunities pp. 1555-1561

- Casper Solheim Bojer
- Commentary on the M5 forecasting competition pp. 1562-1568

- Stephan Kolassa
Volume 38, issue 3, 2022
- Forecasting: theory and practice pp. 705-871

- Fotios Petropoulos, Daniele Apiletti, Vassilios Assimakopoulos, Mohamed Zied Babai, Devon K. Barrow, Souhaib Ben Taieb, Christoph Bergmeir, Ricardo J. Bessa, Jakub Bijak, John E. Boylan, Jethro Browell, Claudio Carnevale, Jennifer Castle, Pasquale Cirillo, Michael Clements, Clara Cordeiro, Fernando Luiz Cyrino Oliveira, Shari De Baets, Alexander Dokumentov, Joanne Ellison, Piotr Fiszeder, Philip Hans Franses, David T. Frazier, Michael Gilliland, M. Sinan Gönül, Paul Goodwin, Luigi Grossi, Yael Grushka-Cockayne, Mariangela Guidolin, Massimo Guidolin, Ulrich Gunter, Xiaojia Guo, Renato Guseo, Nigel Harvey, David Hendry, Ross Hollyman, Tim Januschowski, Jooyoung Jeon, Victor Richmond R. Jose, Yanfei Kang, Anne B. Koehler, Stephan Kolassa, Nikolaos Kourentzes, Sonia Leva, Feng Li, Konstantia Litsiou, Spyros Makridakis, Gael M. Martin, Andrew Martinez, Sheik Meeran, Theodore Modis, Konstantinos Nikolopoulos, Dilek Önkal, Alessia Paccagnini, Anastasios Panagiotelis, Ioannis Panapakidis, Jose M. Pavía, Manuela Pedio, Diego J. Pedregal, Pierre Pinson, Patrícia Ramos, David E. Rapach, J Reade, Bahman Rostami-Tabar, Michał Rubaszek, Georgios Sermpinis, Han Lin Shang, Evangelos Spiliotis, Aris A. Syntetos, Priyanga Dilini Talagala, Thiyanga S. Talagala, Len Tashman, Dimitrios Thomakos, Thordis Thorarinsdottir, Ezio Todini, Juan Ramón Trapero Arenas, Xiaoqian Wang, Robert L. Winkler, Alisa Yusupova and Florian Ziel
- In-sample tests of predictability are superior to pseudo-out-of-sample tests, even when data mining pp. 872-877

- Ian Hunt
- Forecasting cryptocurrency volatility pp. 878-894

- Leopoldo Catania and Stefano Grassi
- Forecasting football results and exploiting betting markets: The case of “both teams to score” pp. 895-909

- Igor Barbosa da Costa, Leandro Balby Marinho and Carlos Eduardo Santos Pires
- Cyberattack-resilient load forecasting with adaptive robust regression pp. 910-919

- Jieying Jiao, Zefan Tang, Peng Zhang, Meng Yue and Jun Yan
- FFORMPP: Feature-based forecast model performance prediction pp. 920-943

- Thiyanga S. Talagala, Feng Li and Yanfei Kang
- Forecasting European carbon returns using dimension reduction techniques: Commodity versus financial fundamentals pp. 944-969

- Xueping Tan, Kavita Sirichand, Andrew Vivian and Xinyu Wang
- A data-driven approach to forecasting ground-level ozone concentration pp. 970-987

- Dario Marvin, Lorenzo Nespoli, Davide Strepparava and Vasco Medici
- Context effects in inflation surveys: The influence of additional information and prior questions pp. 988-1004

- Xiaoxiao Niu and Nigel Harvey
- Forecasting sales using online review and search engine data: A method based on PCA–DSFOA–BPNN pp. 1005-1024

- Chuan Zhang, Yu-Xin Tian and Zhi-Ping Fan
- Dynamic functional time-series forecasts of foreign exchange implied volatility surfaces pp. 1025-1049

- Han Lin Shang and Fearghal Kearney
- Correction to: Optimal and robust combination of forecasts via constrained optimization and shrinkage pp. 1050-1050

- Francesco Roccazzella, Paolo Gambetti and Frédéric Vrins
- Forecasting corporate default risk in China pp. 1054-1070

- Xuan Zhang, Yang Zhao and Xiao Yao
- Spatial dependence in microfinance credit default pp. 1071-1085

- Victor Medina-Olivares, Raffaella Calabrese, Yizhe Dong and Baofeng Shi
- Mining semantic features in current reports for financial distress prediction: Empirical evidence from unlisted public firms in China pp. 1086-1099

- Cuiqing Jiang, Ximei Lyu, Yufei Yuan, Zhao Wang and Yong Ding
- The recurrence of financial distress: A survival analysis pp. 1100-1115

- Fanyin Zhou, Lijun Fu, Zhiyong Li and Jiawei Xu
- Sequential optimization three-way decision model with information gain for credit default risk evaluation pp. 1116-1128

- Feng Shen, Xin Zhang, Run Wang, Dao Lan and Wei Zhou
- A flexible framework for intervention analysis applied to credit-card usage during the coronavirus pandemic pp. 1129-1157

- Anson Ho, Lealand Morin, Harry Paarsch and Kim Huynh
- Assessing and predicting small industrial enterprises’ credit ratings: A fuzzy decision-making approach pp. 1158-1172

- Yue Sun, Nana Chai, Yizhe Dong and Baofeng Shi
- Using scenarios to forecast outcomes of a refugee crisis pp. 1175-1184

- Lars Wicke, Mandeep K. Dhami, Dilek Önkal and Ian K. Belton
- Relative performance of judgmental methods for forecasting the success of megaprojects pp. 1185-1196

- Konstantia Litsiou, Yiannis Polychronakis, Azhdar Karami and Konstantinos Nikolopoulos
- Anticipating special events in Emergency Department forecasting pp. 1197-1213

- Bahman Rostami-Tabar and Florian Ziel
- A disaster response model driven by spatial–temporal forecasts pp. 1214-1220

- Konstantinos Nikolopoulos, Fotios Petropoulos, Vasco Sanchez Rodrigues, Stephen Pettit and Anthony Beresford
- Endemic-epidemic models with discrete-time serial interval distributions for infectious disease prediction pp. 1221-1233

- Johannes Bracher and Leonhard Held
- Forecasting in humanitarian operations: Literature review and research needs pp. 1234-1244

- Nezih Altay and Arunachalam Narayanan
- Forecasting for social good pp. 1245-1257

- Bahman Rostami-Tabar, Mohammad M. Ali, Tao Hong, Rob Hyndman, Michael D. Porter and Aris Syntetos
- Machine learning algorithms for forecasting and backcasting blood demand data with missing values and outliers: A study of Tema General Hospital of Ghana pp. 1258-1277

- Clement Twumasi and Juliet Twumasi
Volume 38, issue 2, 2022
- Pandemics and forecasting: The way forward through the Taleb-Ioannidis debate pp. 410-412

- Pierre Pinson and Spyros Makridakis
- On single point forecasts for fat-tailed variables pp. 413-422

- Nassim Nicholas Taleb, Yaneer Bar-Yam and Pasquale Cirillo
- Forecasting for COVID-19 has failed pp. 423-438

- John P.A. Ioannidis, Sally Cripps and Martin A. Tanner
- COVID-19: Forecasting confirmed cases and deaths with a simple time series model pp. 439-452

- Fotios Petropoulos, Spyros Makridakis and Neophytos Stylianou
- Short-term forecasting of the coronavirus pandemic pp. 453-466

- Jurgen Doornik, Jennifer Castle and David Hendry
- Short-term Covid-19 forecast for latecomers pp. 467-488

- Marcelo Medeiros, Alexandre Street, Davi Valladão, Gabriel Vasconcelos and Eduardo Zilberman
- Comparing the accuracy of several network-based COVID-19 prediction algorithms pp. 489-504

- Massimo A. Achterberg, Bastian Prasse, Long Ma, Stojan Trajanovski, Maksim Kitsak and Piet Van Mieghem
- Hawkes process modeling of COVID-19 with mobility leading indicators and spatial covariates pp. 505-520

- Wen-Hao Chiang, Xueying Liu and George Mohler
- Epidemiological versus meteorological forecasts: Best practice for linking models to policymaking pp. 521-526

- Erin Coughlan de Perez, Elisabeth Stephens, Maarten van Aalst, Juan Bazo, Eleonore Fournier-Tombs, Sebastian Funk, Jeremy J. Hess, Nicola Ranger and Rachel Lowe
- Guest editorial: Economic forecasting in times of COVID-19 pp. 527-528

- Laurent Ferrara and Xuguang Simon Sheng
- The impact of the COVID-19 pandemic on business expectations pp. 529-544

- Brent Meyer, Brian Prescott and Xuguang Simon Sheng
- Boosting tax revenues with mixed-frequency data in the aftermath of COVID-19: The case of New York pp. 545-566

- Kajal Lahiri and Cheng Yang
- Forecasting unemployment insurance claims in realtime with Google Trends pp. 567-581

- Daniel Aaronson, Scott Brave, R. Andrew Butters, Michael Fogarty, Daniel W. Sacks and Boyoung Seo
- High-frequency monitoring of growth at risk pp. 582-595

- Laurent Ferrara, Matteo Mogliani and Jean-Guillaume Sahuc
- Forecasting the Covid-19 recession and recovery: Lessons from the financial crisis pp. 596-612

- Claudia Foroni, Massimiliano Marcellino and Dalibor Stevanovic
- Transparent modeling of influenza incidence: Big data or a single data point from psychological theory? pp. 613-619

- Konstantinos V. Katsikopoulos, Özgür Şimşek, Marcus Buckmann and Gerd Gigerenzer
- Nowcasting unemployment insurance claims in the time of COVID-19 pp. 635-647

- William Larson and Tara Sinclair
- Dynamic logistic regression and variable selection: Forecasting and contextualizing civil unrest pp. 648-661

- Jordan Bakerman, Karl Pazdernik, Gizem Korkmaz and Alyson G. Wilson
- Regional heterogeneity and U.S. presidential elections: Real-time 2020 forecasts and evaluation pp. 662-687

- Rashad Ahmed and Mohammad Pesaran
- What do forecasting rationales reveal about thinking patterns of top geopolitical forecasters? pp. 688-704

- Christopher W. Karvetski, Carolyn Meinel, Daniel T. Maxwell, Yunzi Lu, Barbara A. Mellers and Philip E. Tetlock
Volume 38, issue 1, 2022
- Predicting monthly biofuel production using a hybrid ensemble forecasting methodology pp. 3-20

- Lean Yu, Shaodong Liang, Rongda Chen and Kin Keung Lai
- Artificial bee colony-based combination approach to forecasting agricultural commodity prices pp. 21-34

- Jue Wang, Zhen Wang, Xiang Li and Hao Zhou
- A novel text-based framework for forecasting agricultural futures using massive online news headlines pp. 35-50

- Jianping Li, Guowen Li, Mingxi Liu, Xiaoqian Zhu and Lu Wei
- Forecasting realized volatility of agricultural commodity futures with infinite Hidden Markov HAR models pp. 51-73

- Jiawen Luo, Tony Klein, Qiang Ji and Chenghan Hou
- Forecasting realized volatility of agricultural commodities pp. 74-96

- Stavros Degiannakis, George Filis, Tony Klein and Thomas Walther
- Optimal and robust combination of forecasts via constrained optimization and shrinkage pp. 97-116

- Francesco Roccazzella, Paolo Gambetti and Frédéric Vrins
- Forecasting in GARCH models with polynomially modified innovations pp. 117-141

- Gianmarco Vacca, Maria Zoia and Luca Bagnato
- Forecast combination for VARs in large N and T panels pp. 142-164

- Ryan Greenaway-McGrevy
- The kernel trick for nonlinear factor modeling pp. 165-177

- Varlam Kutateladze
- Enhancing capacity planning through forecasting: An integrated tool for maintenance of complex product systems pp. 178-192

- Duarte Dinis, Ana Barbosa-Póvoa and Ângelo Palos Teixeira
- Combining forecasts for universally optimal performance pp. 193-208

- Wei Qian, Craig A. Rolling, Gang Cheng and Yuhong Yang
- Classification-based model selection in retail demand forecasting pp. 209-223

- Matthias Ulrich, Hermann Jahnke, Roland Langrock, Robert Pesch and Robin Senge
- Nonparametric expected shortfall forecasting incorporating weighted quantiles pp. 224-239

- Giuseppe Storti and Chao Wang
- Deep learning for modeling the collection rate for third-party buyers pp. 240-252

- Abdolreza Nazemi, Hani Rezazadeh, Frank J. Fabozzi and Markus Höchstötter
- Reducing revisions in hedonic house price indices by the use of nowcasts pp. 253-266

- Doron Sayag, Dano Ben-hur and Danny Pfeffermann
- Comparing probabilistic forecasts of the daily minimum and maximum temperature pp. 267-281

- Xiaochun Meng and James W. Taylor
- Informational efficiency and behaviour within in-play prediction markets pp. 282-299

- Giovanni Angelini, Luca De Angelis and Carl Singleton
- Spatio-temporal probabilistic forecasting of wind power for multiple farms: A copula-based hybrid model pp. 300-320

- Mario Arrieta-Prieto and Kristen R. Schell
- A Bayesian approach for predicting food and beverage sales in staff canteens and restaurants pp. 321-338

- Konstantin Posch, Christian Truden, Philipp Hungerländer and Jürgen Pilz
- Online hierarchical forecasting for power consumption data pp. 339-351

- Margaux Brégère and Malo Huard
- Random coefficient state-space model: Estimation and performance in M3–M4 competitions pp. 352-366

- Giacomo Sbrana and Andrea Silvestrini
- Crude oil price forecasting incorporating news text pp. 367-383

- Yun Bai, Xixi Li, Hao Yu and Suling Jia
- Optimal probabilistic forecasts: When do they work? pp. 384-406

- Gael M. Martin, Rubén Loaiza-Maya, Worapree Maneesoonthorn, David T. Frazier and Andrés Ramírez-Hassan
| |